

ELOXIEREN / Badgrößen

Trägerwerkstoffe

Aluminium, Aluminiumlegierungen (z.B. AlMgSi0,5; AlMgSi1; AlMn; AlMg1 bis AlMg5)

Eigenschaften

- Korrosionsschutz
- gefärbte Teile, dekorative Oberflächen
- Abriebschutz

Verfahren

Eloxal steht für "elektrolytisch oxidiertes Aluminium". Bei der Eloxalschicht handelt es sich um eine, meist mit Gleichstrom bei anodischer Polung hergestellte Schicht, die im Wesentlichen aus Aluminiumoxid besteht. Die Schichteigenschaften und die Schichtdicke sind in engen Grenzen steuerbar und können so den verschiedensten Anforderungen angepasst werden. Die Eloxalschicht wird nicht als Fremdschicht auf der Aluminiumoberfläche aufgebracht, sie wächst durch Umwandlung von metallischem Aluminium in Aluminiumoxid aus dem Grundmaterial heraus. Es gibt viele verschiedene Arten von Eloxalelektrolyten. Zum Einsatz kommt meist das so genannte GS-Verfahren, welches mit oder ohne Zusätze auf Schwefelsäurebasis arbeitet.

Färben

Eine Besonderheit ist das Färben der Eloxal-Schicht. Für meist dekorative Zwecke wird die poröse Struktur einer frisch erzeugten Oxidschicht genutzt, um darin Farbstoffe einzulagern.

Harteloxieren

Trägerwerkstoffe

Aluminium, Aluminiumlegierungen

Eigenschaften

- guter Korrosionsschutz, hohe Verschleiß- u. Abriebfestigkeit
- gute tribologische Eigenschaften (Gleitfähigkeit)
- große u. durchgehend gleichmäßige Härte (300 600 HV)
- hohe Hitzebeständigkeit (bis 2000°C)
- gute elektrische Isoliereigenschaften

Anwendung

z.B. Zahnräder, Kolben, Zylinder, Düsen, Zylinderbüchsen, hydraulische Bauteile, Rollen, Gleitschienen

Verfahren

Um auf Aluminiumwerkstoffen sehr starke Schutzschichten mit hoher Härte zu erzeugen (hard coatings), wird das Harteloxalverfahren angewandt. Die legierungsabhängig üblichen Schichtdicken liegen im Bereich von 25 bis 60 µm und können in Sonderfällen noch ausgedehnt werden. Harteloxalschichten wachsen etwa um die Hälfte nach außen. Es ist also wichtig, diesen Dimensionszuwachs des Teiles schon bei der Konstruktion zu berücksichtigen.

Die Schichtbildung und -qualität sowie die Bearbeitungsmethode hängen stark von den Legierungsbestandteilen ab. Legierungen mit hohem Silizium-, Kupfer-, Zinkoder Bleigehalt sind problematisch für eine Harteloxalbeschichtung (siehe Übersicht).

Eigenfärbung

Die Schichten haben durch die Einlagerung von Legierungsbestandteilen eine Eigenfarbe. Sie kann von Bronze über Braun bis Grau und Schwarz variieren. Harteloxalschichten sind funktionelle Schichten, an die nur bedingt Ansprüche in dekorativer Hinsicht gestellt werden.

Zur Verfügung stehende Badgrößen:

Farbeloxal

Rot Blau Türkis Kupfer – max Abm: 7000 x 300 x 1600 mm

Silber Schwarz Braun Bronze Gold – max Abm: 8000 x 900 x 2000 mm

Sonderfarben möglich nach Anfrage (z.B. Grün, Gelb)

Harteloxal:

Max. Badabmessung: Standard 3000 x 700 x 1000 mm

Sonderlängen bis 6000 mm möglich

Übersicht: Eloxal / Harteloxal

	Normal - Eloxal	Hart - Eloxal	
Schichtstärke	6-15 μm, max. 20 μm	30-60 μm, max. 100 μm	
Schichtaufbau	70 % Material 50 % Material 50 % Aufbau 50 % Aufbau		
Härte	200 – 300 HV	450 – 550 HV	
Verfahrenstemp.	20 – 22 ° C	0 ° C	

Hart - Eloxal: Legierungsübersicht für die Materialeignung

Legierung	Material	DIN	Name	Eignung
AlMgSi0,5	En-AW 6060	3,3206		sehr gut
AlMgSi1	En-AW 6082	3,2315		sehr gut
AlMg1	En-AW 5005A	3,3315		sehr gut
AIMg3	En-AW 5754	3,3535		sehr gut
AlMg4,5Mn	En-AW 5083	3,3547	Peraluman 460 Alplan	sehr gut
Al99,5		3,055	Reinaluminium	sehr gut
AlZn5,5MgCu0,5		3,4345	Alumec79	gut
AlZn5,5MgCu AlZn5,5MgCu 1,5	En-AW 7075	3,4365	Perunal 215	gut
AlZn4,5Mg1 AlZnMg1	En-AW 7020	3,4335	Unidur 102	gut
AlMgSiPb	En-AW 6012	3,0615	Anticorodal PB 109	weniger geeignet
AlCuMg1		3,1325		weniger geeignet
AlCuMg2	En-AW 2024	3,1355	Avional	weniger geeignet
AlCu4PbMgMn AlCuMgPb	En-AW 2007	3,1345		nicht geeignet
AlCuBiPb	En-AW 2011	3,1655	Decoltal 500	nicht geeignet
AlMg1SiCu	En-AW 6061	3,3211	Anticorodal 80	nicht geeignet
AlMg1PbCuSi1				nicht geeignet
AlMg1PbCuSi1				nicht geeignet
AlMg1PbCuSi1				nicht geeignet